@inproceedings{nguyen2026coda,title={Improved Object-Centric Diffusion Learning with Registers and Contrastive Alignment},author={Nguyen, Bac and Takida, Yuhta and Murata, Naoki and Lai, Chieh-Hsin and Uesaka, Toshimitsu and Ermon, Stefano and Mitsufuji, Yuki},year={2026},booktitle={The International Conference on Learning Representations}}
@inproceedings{takida2026sona,title={SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator},author={Takida, Yuhta and Hayakawa, Satoshi and Shibuya, Takashi and Imaizumi, Masaaki and Murata, Naoki and Nguyen, Bac and Uesaka, Toshimitsu and Lai, Chieh-Hsin and Mitsufuji, Yuki},year={2026},booktitle={The International Conference on Learning Representations}}
@inproceedings{nguyen2025improving,title={Improving vector-quantized image modeling with latent consistency-matching diffusion},author={Nguyen, Bac and Lai, Chieh-Hsin and Takida, Yuta and Murata, Naoki and Uesaka, Toshimitsu and Ermon, Stefano and Mitsufuji, Yuki},booktitle={International Joint Conference on Neural Networks},pages={1--8},year={2025},organization={IEEE},}
@article{murata2025gd,title={G2D2: Gradient-Guided Discrete Diffusion for Inverse Problem Solving},author={Murata, Naoki and Lai, Chieh-Hsin and Takida, Yuhta and Uesaka, Toshimitsu and Nguyen, Bac and Ermon, Stefano and Mitsufuji, Yuki},journal={Transactions on Machine Learning Research},issn={2835-8856},year={2025},}
@inproceedings{nguyen2024saft,title={SAFT: Towards out-of-distribution generalization in fine-tuning},author={Nguyen, Bac and Uhlich, Stefan and Cardinaux, Fabien and Mauch, Lukas and Edraki, Marzieh and Courville, Aaron},booktitle={European Conference on Computer Vision},pages={138--154},year={2024},organization={Springer},}
@inproceedings{vani2024sparo,title={Sparo: Selective attention for robust and compositional transformer encodings for vision},author={Vani, Ankit and Nguyen, Bac and Lavoie, Samuel and Krishna, Ranjay and Courville, Aaron},booktitle={European Conference on Computer Vision},pages={233--251},year={2024},organization={Springer},}
@inproceedings{zampierin2024skill,title={Skill: Similarity-aware knowledge distillation for speech self-supervised learning},author={Zampierin, Luca and Hacene, Ghouthi Boukli and Nguyen, Bac and Ravanelli, Mirco},booktitle={International Conference on Acoustics, Speech, and Signal Processing Workshops},pages={675--679},year={2024},organization={IEEE},}
@inproceedings{kogel2023towards,title={Towards Robust FastSpeech 2 by Modelling Residual Multimodality},author={K{\"o}gel, Fabian and Nguyen, Bac and Cardinaux, Fabien},booktitle={Annual Conference of the International Speech Communication Association},pages={4309--4313},year={2023},}
@inproceedings{nguyen2023improving,title={Improving self-supervised learning for audio representations by feature diversity and decorrelation},author={Nguyen, Bac and Uhlich, Stefan and Cardinaux, Fabien},booktitle={International Conference on Acoustics, Speech, and Signal Processing},pages={1--5},year={2023},organization={IEEE},}
@inproceedings{nguyen2023autotts,title={AutoTTS: End-to-end text-to-speech synthesis through differentiable duration modeling},author={Nguyen, Bac and Cardinaux, Fabien and Uhlich, Stefan},booktitle={International Conference on Acoustics, Speech and Signal Processing},pages={1--5},year={2023},organization={IEEE},}
@inproceedings{nguyen2023efficient,title={Efficient Training of Deep Equilibrium Models},author={Nguyen, Bac and Mauch, Lukas},booktitle={Hardware Aware Efficient Training ICML Workshop},year={2022},}
@inproceedings{nguyen2022nvc,title={NVC-Net: End-to-end adversarial voice conversion},author={Nguyen, Bac and Cardinaux, Fabien},booktitle={International Conference on Acoustics, Speech and Signal Processing},pages={7012--7016},year={2022},organization={IEEE},}
@article{nguyen2020improved,title={Improved deep embedding learning based on stochastic symmetric triplet loss and local sampling},author={Nguyen, Bac and De Baets, Bernard},journal={Neurocomputing},volume={402},pages={209--219},year={2020},publisher={Elsevier},}
@article{nguyen2019kernel,title={Kernel-based distance metric learning for supervised $k$-means clustering},author={Nguyen, Bac and De Baets, Bernard},journal={IEEE Transactions on Neural Networks and Learning Systems},volume={30},number={10},pages={3084--3095},year={2019},publisher={IEEE},}
@article{nguyen2019efficient,title={An efficient method for clustered multi-metric learning},author={Nguyen, Bac and Ferri, Francesc J and Morell, Carlos and De Baets, Bernard},journal={Information Sciences},volume={471},pages={149--163},year={2019},publisher={Elsevier},}
@article{nguyen2018kernel,title={Kernel distance metric learning using pairwise constraints for person re-identification},author={Nguyen, Bac and De Baets, Bernard},journal={IEEE Transactions on Image Processing},volume={28},number={2},pages={589--600},year={2018},publisher={IEEE},}
@article{nguyen2018scalable,title={Scalable large-margin distance metric learning using stochastic gradient descent},author={Nguyen, Bac and Morell, Carlos and De Baets, Bernard},journal={IEEE Transactions on Cybernetics},volume={50},number={3},pages={1072--1083},year={2018},publisher={IEEE},}
@article{nguyen2018approach,title={An approach to supervised distance metric learning based on difference of convex functions programming},author={Nguyen, Bac and De Baets, Bernard},journal={Pattern Recognition},volume={81},pages={562--574},year={2018},publisher={Elsevier},}
@article{nguyen2018distance,title={Distance metric learning for ordinal classification based on triplet constraints},author={Nguyen, Bac and Morell, Carlos and De Baets, Bernard},journal={Knowledge-Based Systems},volume={142},pages={17--28},year={2018},publisher={Elsevier},}
@article{nguyen2017supervised,title={Supervised distance metric learning through maximization of the Jeffrey divergence},author={Nguyen, Bac and Morell, Carlos and De Baets, Bernard},journal={Pattern Recognition},volume={64},pages={215--225},year={2017},publisher={Elsevier},}
@article{nguyen2017distance,title={Distance metric learning with the universum},author={Nguyen, Bac and Morell, Carlos and De Baets, Bernard},journal={Pattern Recognition Letters},volume={100},pages={37--43},year={2017},publisher={Elsevier},}
@article{nguyen2016large,title={Large-scale distance metric learning for $k$-nearest neighbors regression},author={Nguyen, Bac and Morell, Carlos and De Baets, Bernard},journal={Neurocomputing},volume={214},pages={805--814},year={2016},publisher={Elsevier},}